

OTC-29879-MS

Replacing Fossil Fuels by Wind Power in Energy Supply to Offshore O&G Exploration and Production Activities – Possibilities for Brazil

Silvia Schaffel, Fernanda Westin, Mauricio Hernandez, Emilio Lèbre La Rovere CentroClima/PPE/COPPE/UFRJ

Topics

Strengthening Deepwater for the Future

1) Introduction

- 2) Replacing Fossil Fuels by Offshore Wind Power in the World
- 3) Brazilian Wind Power Sector
- Brazilian Onshore Wind Power
- Brazilian Offshore Wind Power
- 4) Synergies O&G X OWP:
- Decommissioning
- Mature Oil Fields, Life Extension and Offshore Wind Resources
- Pre-Salt Development
- 5) Conclusion
- 6) References

Introduction

- GHG emissions will create constraints for O&G sector.
- Regulations to limit GHG emissions in many geographies.
- Pressure from stakeholders for Climate Disclosure.
- Cut in **subsidies/financing** for fossil fuels production.
- Meeting the growing **world energy needs** with **lower GHG emissions**.
- Paris Agreement (2016).

Recognize the Climate Issue and that the global energy system is in a transition for a LOW CARBON ECONOMY.

Introduction

Power Demand Offshore Depends on Key Elements (MYHRE, 2001):

- Oil field that will be explored (temperature, pressure and oil/gas ratio);
- Characteristics of the O&G processing and stages required;
- Need for water or gas injection to develop the field;
- Transport system type (pipelines/shuttle).

Power Supply Offshore: by gas turbines or diesel generators.

- Small platforms: 10 100 MW
- Big platforms: > 100 MW

Typical restrictions of offshore platforms: space onboard, weight, reliability/maintenance.

Replacing Fossil Fuels by OWP in the World

Strengthening Deepwater for the Future

Gemini Wind Farm - produce renewable electricity for 1.5 million people, while reducing CO₂ emissions by 1.25 million tonnes per year <u>https://www.geminiwindpark.nl/about-</u>

gemini-wind-park.html

Hywind Scotland - the world's first operational floating wind farm <u>https://www.equinor.com</u> /en/what-we-do/hywindwhere-the-wind-takesus.html

Johan Sverdrup Field - Equinor: Average emissions from production of O&G: •Johan Sverdrup Field ~0.67kg CO₂/bbl (powered from shore). •Average emissions Norwegian Continental Shelf ~9kg CO₂ /bbl •Average emissions globally ~18kg CO₂ /bbl https://www.equinor.com/en/what-we-do/johan-sverdrup.html

Replacing Fossil Fuels Offshore: Norwegian Case

Strengthening Deepwater for the Future

- 1996: Norwegian Parliament resolved that all new offshore development should consider onshore power supply.
- Shore power supply was classified as "*relatively expensive climate measure*".
- 2010: Climate Cure 2020 has studied measures for the Norwegian petroleum industry which could reduce GHG emissions, among which: **electrification**.

Norwegian Case: Strong Carbon Regulations for the Upstream Sector

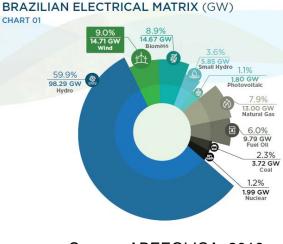
Conceived to be one of the most carbon-efficient offshore fields in the world (0.67 kg CO₂ emissions per barrel)

Projected floating turbines can meet 35% of the annual power demand of the offshore platforms.

	Table 2 – Examples of Oil and gas platforms electrification and their respective reduction of GHG emissions								
	Offshore Platforms	GHG emissions reduction potential (ton CO ₂ /year)	Country	Operator	Year(s) of platform's operation	Distance from shore (km)	Capacity (MW)	Source of electric power	
→	John Sverdrup	460,000	Norway	Equinor	Nov. 2019 (1 st Phase) and 2022 (2 ⁿ Phase)	160	300	From shore	
	Troll C	365,000	Norway	Equinor	1996-2065	65	200	From shore	
	Valhall	300,000	Norway	BP	2011	292	78	From shore	
	Sleipner area platforms	250,000	Norway	Equinor	1996	250	-	From shore	
	Troll A	230,000	Norway	Equinor	1996-2066	70	200	From shore	
_	Gulfaks (A, B and C) and Snorr (A and B)	200,000	Norway	Equinor	1970s- 2040	125	88	Offshore Wind Power (projected)	
	Martin Linge	200,000	Norway	Equinor	2018	161	55	From shore	
	Beatrice Alpha	14,500	Scotland	Talisman Energy UK	1980-2017	24	10	From Offshore Wind	
	Neptune Q13-AA	14,000	Netherlands	Neptune Energy	-	13	-	From shore / Hydrogen pilot project by 2020 ^(e)	

Strong carbon regulations for the upstream sector.

Sources: EQUINOR 2019 and 2018; OT, 2018; NEPTUNE ENERGY, 2019.



Brazilian Onshore Wind Power Sector

- 608 Onshore Wind Plants.
- 12 Brazilian States.
- 15.1 GW Installed Capacity.
- 20.58 million tons of avoided CO₂ emissions in 2018.

Source: ABEEOLICA, 2018.

Source: ABEEOLICA, 2019.

29-31 October 2019 **SulAmérica Convention Center**

Rio de Janeiro, Brazil

#OTCBrasil

Brazilian Offshore Sector

Strengthening Deepwater for the Future

- 9th top oil producer in the world and the largest in Latin America (ANP, 2019).
- Internationally recognized for technological development in deep waters.
- 3 E&P environments: onshore, offshore and pre-salt.

Environment	Number of Producer Wells	Production	Average Oil Production per	
		(Thousand boe/d)	well (bpd)	
Pre-Salt	91	1,936 (59.4%)	21,279	
Conventional Offshore	593	1,095 (33,6%)	1,846	
Onshore	6,570	230 (7.1%)	35	
Total	7,254	3,261	23,160	

Table 4 – Number of Producer Wells and O&G Production in Brazil

Source: CASTILHO, 2019 based on monthly production report from March 2019.

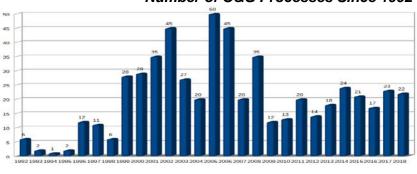
Brazilian Offshore Wind Power Sector

Offshore potential 12 times > onshore potential (ORTIZ and KAMPEL, 2011). Challenges:

- Better understanding environmental impacts of the activity.
- Mapping onshore potential.

Name	Operator	Power	Distance/shore	State
CEO Asa Branca I	Eólica Brasil	400 MW	3 – 8 km	CE
Pilot Wind Power Plant in Ubarana Field	Petrobras	7 MW	20 km	RN
Caucaia Parazinho	EOL Bienergia	310 MW	10 km	CE

Brazilian OWP Sector: Synergies with Offshore E&P


Strengthening Deepwater for the Future

Experience with Offshore Environment:

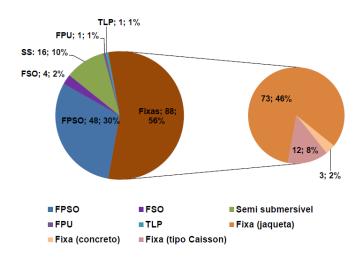
- Metocean information sharing.
- Design foundations for installation of fixed structures.
- Logistics optimization (supply vessels, shore bases, helicopters).

Experience with Environmental Permitting:

- Lessons learned from past 20 years.
- Environmental programs, primary data collected

Number of O&G Processes Since 1992

Source: IBAMA, 2019.



Brazilian OWP Sector: Synergies with Offshore E&P

Decommissioning:

- Considerable decommissioning scenario for the next years (50% production platforms > 25 years).
- ANP Resolution 27/2006 under revision: Devolution of Areas and Deactivation of Installations in the Production Phase.
- ANP incentives different uses for decommissioned structures (Ex: reuse of fixed structures).

Offshore Production Units Operating in Brazil/type

Source: ANP, 2018.

Brazilian OWP Sector: Synergies with Offshore E&P

Strengthening Deepwater for the Future

Complementarity: Mature Oil Fields, Life Extension and Offshore Wind Resources Brazilian Mature Fields in shallow waters: Campos, Overlap with areas of offshore wind potential. Sergipe-Alagoas, Potiguar and Ceará Basins. Ex: water injection for maximizing oil recovery Brazilian Recovery Factor is low (ANP, 2018). powered by OWP. Wind-powered water injection system could become cost competitive in reducing cost and emissions (DNV GL, 2019). Source: ANP. 2018. OTC EVENTS WORLDWIDE 29-31 October 2019 SulAmérica Convention Center **Rio de Janeiro, Brazil #OTCBrasil**

Brazilian OWP Sector: Synergies with Offshore E&P

Complementarity: Mature Oil Fields, Life Extension and Offshore Wind Resources

CARVALHO (2019) analyzed 30 Brazilian offshore mature oil fields:

Water depths - up to 33m,

TC EVENTS WORLDWIDE

- Distance from shore up to 40 km,
- Average wind speed 8 m/s at 100m.

7 Brazilian Mature Oil Fields would have enough wind resources to operate a wind farm: 1 Ceará and 6 Rio Grande do Norte (CARVALHO, 2019).

#OTCBrasil

Brazilian OWP Sector: Synergies with Offshore E&P

Strengthening Deepwater for the Future

Pre-Salt Development

Brazilian FPSOs:

- High distance from shore (200 300 km).
- High water depths (1,000 2,500 m).

Process plants are energy intensive:

- Brazilian FPSOs provide 1.8 GW of power (PEREIRA and CARVALHO, 2015).
- Half FPSOs fired by gas turbines (PEREIRA and CARVALHO, 2015).
- NO_x emission limits for atmospheric pollutants from gas turbines > 100 M are double than for those < 100 MW.

Offshore Wind Power could be used as auxiliary power for FPSOs

Conclusion

Strengthening Deepwater for the Future

- **Carbon emissions** are a constraint on future O&G development.
- An offshore field operated using **electrical power generated onshore**, could reduce offshore emissions by 80% compared to a standard development using gas turbines (EQUINOR, 2019).
- Like the O&G industry, offshore wind industry has begun near the coast and has been advancing towards deeper waters, in the quest for floating offshore wind power.

In Brazil:

 Onshore wind power was once viewed as an expensive and unpredictable energy source, but now holds the 2nd place in the Brazilian power generation mix.

Conclusion

Brazil has 2 offshore E&P environments:

Conventional Offshore:

- Complementarity between development of mature fields and OWP is an opportunity to be assessed, such as the reuse of fixed platforms as structures for offshore wind development.
- ANP fosters the Brazilian industry to propose **different uses** for decommissioned structures, in ways that might help the energy transition.

Pre-Salt:

- Is being developed based on the **FPSOs concept**, whose processes are energy-intensive.
- Half of Brazilian FPSOs are powered by **gas turbines** and sometimes there is no space onboard to install additional turbines. The use of floating wind turbines connected to the FPSO could be an alternative to be assessed.

References

Strengthening Deepwater for the Future

Thank you!!

CENTROCLIMA - Centro de Tecnologia - Bloco I - Sala 208 CEP 21945-970 - Ilha do Fundão - Rio de Janeiro/RJ + 55 (21) 3938-8759

<u>silvia.schaffel@lima.coppe.ufrj.br</u> <u>fernanda@lima.coppe.ufrj.br</u> <u>mauriciohernandez@lima.coppe.ufrj.br</u> <u>emilio@ppe.ufrj.br</u>

